文章

概率论

概率论

第一讲 随机事件与概率

古典概型

古典概型:样本空间$\varOmega$中有有限个,等可能的样本点.

\[P(A)=\dfrac{\mathrm{card}(A)}{\mathrm{card}(\varOmega)}\]
  • 随机分配:将$n$个质点随机分配到$N$个盒子中
    • 每盒可容纳任意多质点:$N^n$
    • 每盒可容纳至多一个质点:$N(N-1)\cdots(N-n+1)=P_N^n$

例1 将$n$个球随机放入$N(n\le N)$个盒子中,每盒可放任意多个球,求概率.

$A=${某指定$n$个盒子中各有一球} $P(A)=\dfrac{n!}{N^n}$

$B=${恰有$n$个盒子中各有一球} $P(B)=\dfrac{C_N^nn!}{N^n}$

$C=${指定$k(k\le n)$个盒子中各有一球} $P(C)=\dfrac{C_n^kk!(N-k)^{n-k}}{N^n}$

  • 简单随机抽样:从$N$个元素的$\varOmega$中简单抽取
    • 先后有放回取n次:$N^n$
    • 先后无放回取n次:$N(N-1)\cdots(N-n+1)=P_N^n$
    • 任取n个:$C_N^n=\dfrac{P_N^n}{n!}$

例2 袋中有5个球,三白两黑,求至少一个白球的概率.这里求对立事件比较方便

先后有放回取两个球 $P=1-\dfrac{2^2}{5^2}=\dfrac{21}{25}$

先后无放回取两个球 $P=1-\dfrac{2\cdot1}{5\cdot4}=\dfrac{9}{10}$

任取两个球 $P=1-\dfrac{C_2^2}{C_5^2}=\dfrac{9}{10}$

所以说,”任取”和”先后无放回”可以相互替换

例3 袋中有100个球,40白60黑.

先后有放回取20个,求15白5黑的概率. $P=\dfrac{C_{20}^{15}\cdot40^{15}\cdot60^{5}}{100^{20}}=C_{20}^{15}\cdot0.4^{15}\cdot0.6^5$ 二项分布

先后无放回取20个,求15白5黑的概率. $P=\dfrac{C_{40}^{15}C_{60}^{5}}{C_{100}^{20}}$ 超几何分布

先后有放回取20个,求第20次取白的概率. $P=0.4$

先后无放回取20个,求第20次取白的概率. 可以这样理解,将100个球分给到100次取球,然后看第20次取球是否为白球 $P=\dfrac{C_{40}^1\cdot99!}{100!}=0.4$

所以抓阄是公平的,每次取球取到的都是一个带着概率的球.

几何概型

若$\varOmega$是一个可度量的几何区域,样本点落入$\varOmega$的某可度量子区域$A$的可能性与$A$的几何度量成正比,与$A$的位置及形状无关,称为几何概型. \(P(A)=\dfrac{m(A)}{m(\varOmega)}\)

例4 在(0,1)中随机取两数,则两数之差的绝对值小于0.5的概率. $P=\dfrac34$

重要公式求概率

用对立

  • $\overline{A\cup B}=\overline A\cap\overline B$
  • $\overline{A\cap B}=\overline A\cup\overline B$
  • $P(A)=1-P(\overline A)$

用互斥

  • $\begin{aligned}P(A+B)&=P(A\overline B)+P(B)\&=P(\overline AB)+P(A)\&=P(A\overline B)+P(\overline AB)+P(A\cap B)\end{aligned}$
  • 全集分解思想若$B_1,B_2,B_3$为完备事件组(相交为空,相并为全集),则$A=A\varOmega=AB_1\cup AB_2\cup AB_3$
  • $P(A\overline B)=P(A-B)=P(A)-P(AB)$
  • $P(A+B)=P(A)+P(B)-P(AB)$
  • $P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)$
  • 若$A_1,A_2,\cdots A_n$两两互斥,则和的概率等于概率的和.

用独立

  • 若$A_1,A_2,\cdots A_n$相互独立,则乘积的概率等于概率的乘积.
  • 若$A_1,A_2,\cdots A_n$相互独立,$P(A_1+A_2+\cdots+A_n)=1-P(\overline{A_1\cup A_2\cup\cdots\cup A_n})=1-P(\overline{A_1})P(\overline{A_2})\cdots P(\overline{A_n})$

用条件

  • $P(AB)=\dfrac{P(AB)}{P(B)}\quad P(B)>0$
  • $\begin{aligned}P(AB)&=P(B)P(AB)\&=P(A)P(AB)\&=P(A)+P(B)-P(A+B)\&=P(A)-P(A\overline B)\end{aligned}$
  • $P(A_1A_2A_3)=P(A_1)P(A_2A_1)P(A_3A_1A_2)$
  • 全概率公式设$A_1,A_2,\cdots,A_n$为完备事件组,$P(A_i)>0$,则$P(B)=\sum P(B|A_i)P(A_i)$ 已知原因,求结果的概率</idea>
  • 贝叶斯公式当$B$发生时,$P(A_jB)=\dfrac{P(A_jB)}{P(B)}=\dfrac{P(A_j)P(BA_j)}{\sum P(BA_i)P(A_i)}$已知结果,求原因的概率</idea>

用不等式或包含

  • $0\le P(A)\le1$
  • 若$A\subset B$,则$P(A)\le P(B)$ $P(AB)\le P(A)\le P(A+B)$

用最值

  • $\lbrace \mathbf{max}\lbrace X,Y\rbrace \le a\rbrace =\lbrace X\le a\rbrace \cap\lbrace Y\le a\rbrace $
  • $\lbrace \mathbf{max}\lbrace X,Y\rbrace >a\rbrace =\lbrace X>a\rbrace \cup\lbrace Y>a\rbrace $
  • $\lbrace \mathbf{min}\lbrace X,Y\rbrace \le a\rbrace =\lbrace X\le a\rbrace \cup\lbrace Y\le a\rbrace $
  • $\lbrace \mathbf{min}\lbrace X,Y\rbrace >a\rbrace =\lbrace X>a\rbrace \cap\lbrace Y>a\rbrace $
  • $\lbrace \mathbf{max}\lbrace X,Y\rbrace \le a\rbrace \subset\lbrace \mathbf{min}\lbrace X,Y\rbrace \le a\rbrace $
  • $\lbrace \mathbf{min}\lbrace X,Y\rbrace >a\rbrace \subset\lbrace \mathbf{max}\lbrace X,Y\rbrace >a\rbrace $

例5 $P(A)=0.4,P(\overline A\cup B)=0.8$,求$P(\overline B|A)$. 法一: $P(\overline B|A)=\dfrac{P(A\overline B)}{P(A)}=\dfrac{P(A)-P(AB)}{P(A)}=\dfrac{P(A)-(P(\overline A\cup B)-P(\overline A))}{P(A)}=\dfrac12$ 法二: $P(\overline A\cup B)=1-P(A\cap\overline B)=1-P(A\overline B)$

例6 结论错误的是

(A) $P(AB)+P(AC)+P(BC)\ge P(A)+P(B)+P(C)-1$ 由$P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)$ $P(AB)+P(BC)+P(AC)=P(A)+P(B)+P(C)+P(ABC)-P(A+B+C)\ge P(A)+P(B)+P(C)-1$

(B) 若$P(A|B)>P(A|\overline B)$则$P(B|A)>P(B|\overline A)$ $\dfrac{P(AB)}{P(B)}>\dfrac{P(A\overline B)}{P(\overline B)}=\dfrac{P(A)-P(AB)}{1-P(B)}$ $\dfrac{P(AB)}{P(B)}>\dfrac{P(A)}1$ $P(AB)>P(A)P(B)$ $P(B|A)>P(B|\overline A)$ 如果抽烟的比不抽烟的容易得肺癌,那么得肺癌的里抽烟的一定比没得肺癌的多</idea>

(C) $P(A_1A_2\cdots A_n)\ge P(A_1)P(A_2)\cdots P(A_n)-(n-1)$ 数学归纳法,$P(A+B)=P(A)+P(B)-P(AB)\le1$ $P(AB)\ge P(A)+P(B)-1$ 当$n-1$时成立,则$n$时: $P(A_1A_2\cdots A_n)\ge P(A_1A_2\cdots A_{n-1})+P(A_n)-1\ge P(A_1)P(A_2)\cdots P(A_{n-1})-(n-2)+P(A_n)-1=P(A_1)P(A_2)\cdots P(A_n)-(n-1)$

$|P(AB)-P(A)P(B)|>\dfrac14$ 不妨设$P(A)\ge P(B)$ $P(AB)-P(A)P(B)\le P(A)-P(A)P(A)\le \dfrac14$ 另有$P(A)P(B)-P(AB)=P(A)(P(AB)+P(\overline AB))-P(AB)=(P(A)-1)P(AB)+P(A)P(\overline AB)\le P(A)P(\overline A)\le\dfrac14$

例7 $P\lbrace X\ge0,Y\ge0\rbrace =\dfrac37$,$P\lbrace X\ge0\rbrace =P\lbrace Y\ge0\rbrace =\dfrac47$,求 $A=\lbrace \mathbf{max}\lbrace X,Y\rbrace \ge0\rbrace $ $B=\lbrace \mathbf{max}\lbrace X,Y\rbrace <0,\mathbf{min}\lbrace X,Y\rbrace <0\rbrace $ $C=\lbrace \mathbf{max}\lbrace X,Y\rbrace \ge0,\mathbf{min}\lbrace X,Y\rbrace <0\rbrace $ $P(A)=P(\lbrace X\ge0\rbrace \cup\lbrace Y\ge0\rbrace )=P(\lbrace X\ge0\rbrace )+P(\lbrace Y\ge0\rbrace )-P(\lbrace X\ge0\rbrace ,\lbrace Y\ge0\rbrace )=\dfrac57$ $P(B)=P(\mathbf{max}\lbrace X,Y\rbrace <0)=1-P(A)=\dfrac27$ $P(C)=P(A)-P(\mathbf{max}\lbrace X,Y\rbrace \ge0,\mathbf{min}\lbrace X,Y\rbrace \ge0)=P(A)-P(\mathbf{min}\lbrace X,Y\rbrace \ge0)=\dfrac57-\dfrac37=\dfrac27$ 全集分解思想

例8 有3女7男,无放回取,求概率

第三次取到女的概率 设$A_i=${第i次取到女} $P(A_3)=\dfrac3{10}$

第三次才取到女的概率 $P(\overline A_1\overline A_2 A_3)=P(\overline A_1)P(\overline A_2|\overline A_1)P(A_3|\overline A_1\overline A_2)=\dfrac7{10}\dfrac69\dfrac38=\dfrac7{40}$

已知前两次没有取到女,求第三次取到女的概率 $P(A_3|\overline A_1\overline A_2)=\dfrac38$

例9 甲命中目标概率为0.6,乙命中目标的概率为0.5

任选一人,若命中,求是甲的概率. 设$A_1=${选中甲},$A_2=${选中乙},$B=${目标被命中} $P(A_1|B)=\dfrac{P(A_1B)}{P(B)}=\dfrac{P(A_1)P(B|A_1)}{P(A_1)P(B|A_1)+P(A_2)P(B|A_2)}=\dfrac6{11}$

甲乙两人独立射击,若命中,是甲命中的概率 记$A_1=${甲命中},$A_2=${乙命中},$B=${目标被命中},$B=A_1\cup A_2$ $P(A_1|B)=\dfrac{P(A_1B)}{P(B)}=\dfrac{P(A_1)}{P(A_1)+P(A_2)-P(A_1)P(A_2)}=\dfrac34$

例10 某批产品优等率为$80\%$,检验员将优等品判为优等品的概率为$97\%$,将非优等品判为优等品的概率为$2\%$.由三个独立的检验员组成小组,至少两人判优认定为优等品.求已经认定为优等品的条件下,确实为优等品的概率. 记$A=\lbrace$产品为优等品$\rbrace$,$B=\lbrace$产品判为优等品$\rbrace$,求$P(A|B)$. $P(A|B)=\dfrac{P(AB)}{P(B)}=\dfrac{P(A)P(B|A)}{P(A)P(B|A)+P(\bar A)P(B|\bar A)}$. 其中$P(A)=0.8,P(\bar A)=0.2$ 记$X=$小组将优等品判为优等品的人数,$X\sim B(3,0.97)$, 记$Y=$小组将非优等品判为优等品的人数,$Y\sim B(3,0.02)$. $P(B|A)=P\lbrace X\ge2\rbrace=C_3^2\cdot0.97^2\cdot0.03^1+C_3^3\cdot0.97^3=0.997354$, $P(B|\bar A)=P\lbrace Y\ge2\rbrace=C_3^2\cdot0.2^2\cdot0.98^1+C_3^3\cdot0.02^3=0.001184$. $P(A|B)=0.9997$

事件的独立性

若$P(AB)=P(A)P(B)$,称事件$A,B$独立,即$P(BA)=P(B),P(A)>0$.

称$A_1,A_2,\cdots A_n(n\ge2)$相互独立,如果其中任意有限个事件$A_{i_1},A_{i_2},\cdots,A_{i_k}$,有$P(A_{i_1}A_{i_2}\cdots A_{i_k})=P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k})$,相互独立一定两两独立.

例11 将一枚硬币独立得掷两次,$A_1=${掷一次为正面},$A_2=${第二次为正面},$A_3=${正反面各一次},$A_4=${正面出现两次},则 (A)$A_1,A_2,A_3$相互独立 (B)$A_2,A_3,A_4$相互独立 (C)$A_1,A_2,A_3$两两独立 (D)$A_2,A_3,A_4$两两独立 概率空间为(正,正),(正,反),(反,正),(反,反), $P(A_1)=\dfrac12$,$P(A_2)=\dfrac12$,$P(A_3)=\dfrac12$,$P(A_4)=\dfrac14$,$P(A_1A_2)=\dfrac14$,$P(A_2A_3)=\dfrac14$,$P(A_1A_3)=\dfrac14$,$P(A_1A_2A_3)=0$,$P(A_3A_4)=0$.

  • 若$A,B$独立$\Leftrightarrow\(A,\bar B$独立$\Leftrightarrow\)\bar A, B$独立$\Leftrightarrow$$\bar A, \bar B$独立.
  • 相互独立的事件组,把其中若干事件换为其对立事件,得到的事件组依然相互独立.
  • 相互独立的事件组,从中取出若干事件做任意运算,只要不包含相同的事件,任意运算结果都相互独立.
  • 若$P(A)>0$,则$A,B$独立$\Leftrightarrow$$P(BA)=P(B)$.
  • 若$0<P(A)<1$,则$A,B$独立$\Leftrightarrow$$P(BA)=P(B\bar A)\(\Leftrightarrow\)P(BA)+P(\bar B\bar A)=1$.
  • 若$P(A)=0$或$P(A)=1$,则$A$与任何事件独立.
  • 若$0<P(A)<1$,$0<P(A)<1$.$A,B$互斥$\Rightarrow\(A,B$不独立.$A,B$存在包含关系$\Rightarrow\)A,B$不独立.

例12 设$A,B$相互独立,$0<P(A)<1$,$P(C)=1$,则不相互独立的是

(A) $A,B,A\cup C$ $P(A\cup C)=1$,故$A\cup C$与任何事件独立. (B) $A,B,A-C$ $P(A-C)=P(A\bar C)\le P(\bar C)=0$,故$A-C$与任何事件独立. (C) $A,B,AC$ $P(AAC)=P(AC)\neq P(A)P(AC)$ (D) $A,B,\bar A\bar C$ $P(\bar A\bar C)\le P(\bar C)=0$,故$\bar A\bar C$与任何事件独立.

一维随机变量及其分布

判分布

若$F(x)$是分布函数,有

  • $F(x)$单调不减
  • 右连续
  • $F(-\infty)=0,F(+\infty)=1$

若$p_i$是概率分布,有

  • $p_i\ge0$
  • $\sum p_i=1$

若$f(x)$是概率密度,则

  • $f(x)\ge0$
  • $\int_{-\infty}^{+\infty}f(x)\mathrm{d}x=1$

例1 设$F_1(x)$,$F_2(x)$是分布函数,又$a,b>0,a+b=1$,证明$F(x)=aF_1(x)+bF_2(x)$是分布函数. 显然$F(x)$单调不减,右连续. $F(-\infty)=0,$F(+\infty)=a+b=1$$.

例3 设$F_1(x)$,$F_2(x)$是分布函数,$f_1(x),f_2(x)$是相应的概率密度,则以下必为概率密度的是

(A) $f_1(x)f_2(x)$ (B) $2f_2(x)F_1(x)$ (C) $f_1(x)F_2(x)$ (D) $f_1(x)F_2(x)+F_1(x)f_2(x)$ $\int_{-\infty}^{+\infty}f_1(x)F_2(x)+F_1(x)f_2(x)\mathrm{d}x=\int_{-\infty}^{+\infty}\mathrm{d}[F_1(x)F_2(x)]=1$

例4 $X\sim f(x)$为偶函数,$x~F(x)$,证明若$a>0$

$F(-a)=1-F(a)=\dfrac12-\int_0^af(x)\mathrm{d}x$ $p\lbrace|X|<a\rbrace=2F(a)-1$ $p\lbrace|X|>a\rbrace=2[1-F(a)]$

求分布

$X\sim p_i$,则$F(x)=\sum\limits_{x_i\le x}p_i$.

例5 设$X\sim\begin{bmatrix}1 & 2 & 3 \ \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{bmatrix}$,且$P\lbrace X\ge2\rbrace=\dfrac34$,求$\theta$及$x~F(x)$. 有$P\lbrace X=1\rbrace=\dfrac14=\theta^2,\theta=\dfrac12$. $X\sim\begin{bmatrix}1 & 2 & 3 \ \dfrac14 & \dfrac12 & \dfrac14 \end{bmatrix}$ 则$F(x)=\begin{dcases}0, &x\le 1 \ \dfrac14, & 1\le x\le 2 \ \dfrac34, & 2\le x\le 3\1, &x\ge3\end{dcases}$ 由于右连续,等号应该跟着大于号</idea>

0-1分布:一次伯努利实验$X\sim B(1,p)$

$X\sim\begin{bmatrix}0 & 1 \ 1-p & p\end{bmatrix}$

二项分布:$n$次伯努利实验$X\sim B(n,p)$

$P\lbrace X=k\rbrace=C_n^kp^k(1-p)^{n-k},k=0,1,2,\cdots,n$

几何分布:首中即停止的伯努利实验$X\sim Ge(p)$

$P\lbrace X=k\rbrace=p(1-p)^{k-1},k=1,2,3,\cdots$

超几何分布:$N$件产品$M$件次品任取$n$个$X\sim H(n,M,N)$

$P\lbrace X=k\rbrace=\dfrac{C_M^kC_{N-M}^{n-k}}{C_N^n}$

泊松分布:一段时间内质点来的个数$X\sim P(\lambda)$

$P\lbrace X=k\rbrace=\dfrac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,3,\cdots$

例6 请确定下列随机变量概率密度函数中变量$a$的值,并求出概率分布. $f(x)=\begin{dcases}ae^x, &x<0 \ \dfrac14, & 0\le x<2 \ 0, & x\ge2\end{dcases}$ $1=\int_{-\infty}^{+\infty}f(x)\mathrm{d}x=\int_{-\infty}^0ae^x\mathrm{d}x+\int_0^2\dfrac14\mathrm{d}x$,$a=\dfrac12$ $F(x)=\begin{dcases}\dfrac12e^x, &x<0 \ \dfrac12+\dfrac14x, & 0\le x<2 \ 1, & x\ge2\end{dcases}$

均匀分布:落入子区间的概率与子区间长度成正比$X\sim U(a,b)$

$x\sim f(x)=\begin{dcases}\dfrac1{b-a}, &a\le x\le b \ 0, & \text{other.}\end{dcases}$ $x\sim F(x)=\begin{dcases}0, & x\le a \ \dfrac{x-a}{b-a}, &a\le x\le b \ 1, & x\ge b \end{dcases}$

指数分布:连续的几何分布$X\sim E(\lambda)$

$x\sim f(x)=\begin{dcases}\lambda e^{-\lambda x}, &x>0 \ 0, & \text{other.}\end{dcases}$ $x\sim F(x)=\begin{dcases}0, & x<0 \ 1-e^{-\lambda x}, &x\ge 0 \end{dcases}$ 指数分布具有无记忆性,$P\lbrace X\ge t+s|X\ge t\rbrace=P\lbrace X\ge s\rbrace$

正态分布$X\sim N(\mu,\sigma^2)$

$x\sim f(x)=\dfrac1{\sqrt{2\pi}\sigma}e^{-\dfrac{(x-\mu)^2}{2\sigma^2}}$

标准正态分布$x\sim\varphi(x)=\dfrac1{\sqrt{2\pi}}e^{-\dfrac{x^2}2}$

若$X\sim N(\mu,\sigma^2)$

  • $\dfrac{x-\mu}\sigma\sim N(0,1)$
  • $F(x)=\varPhi(\dfrac{x-\mu}\sigma)$
  • $P(a\le X\le b)=\varPhi(\dfrac{b-\mu}\sigma)-\varPhi(\dfrac{a-\mu}\sigma)$
  • $P(\mu-\sigma\le X\le\mu+\sigma)=\varPhi(1)-\varPhi(-1)=2\varPhi(1)-1$
  • $P(\mu-k\sigma\le X\le\mu+k\sigma)=\varPhi(k)-\varPhi(-k)=2\varPhi(k)-1$

若$X\sim N(0,1)$

  • $\varPhi(-x)=1-\varPhi(x)$
  • $P(X\le a)=2\varPhi(a)-1$·
  • $P(X>a)=2[1-\varPhi(a)]$

例7 一条生产线连续生产$n$件产品不出故障的概率为$\dfrac{e^{-1}}{n!},n=0,1,2,\cdots$.设产品优质率为$p(0<p<1)$,各产品独立.求在两次故障间共生产$k$件优质品的概率. 设$B_k=\lbrace$两次故障间共生产$k$件优质品$\rbrace$, $B_n=\lbrace$两次故障间共生产$n$件产品$\rbrace$, $P(A_n)=\dfrac{e^{-1}}{n!}$ $P(B_k|A_n)=C_n^kp^k(1-p)^{n-k},k\ge n$ $P(B_k)=\sum\limits_{n=k}^{\infty}p(A_n)P(B_k|A_n)=\dfrac{e^{-1}}{n!}C_n^kp^k(1-p)^{n-k}=\dfrac{e^{-1}p^k}{k!}\sum\limits_{n=k}^{\infty}\dfrac{(1-p)^{n-k}}{(n-k)!}=\dfrac{e^{-1}p^k}{k!}e^{1-p}=\dfrac{p^k}{k!}e^{-p}$

例8 设$X\sim U(2,5)$,对$X$进行3次独立观测,求至少有2次观测值大于3的概率. $p=P\lbrace X>3\rbrace=\dfrac23$, 记$Y=\lbrace$ 3次独立观测中$X$的观测值大于3的次数$\rbrace$,$Y\sim B(3,\dfrac23)$. $P\lbrace Y\ge2\rbrace=\dfrac{20}{27}$.

例9 设某设备在任何时间长度$t$内发生故障的次数$N(t)$服从参数为$\lambda t$的泊松分布.

求相继出现两次故障之间的时间间隔$T$的分布. $T\sim F_T(t)=P\lbrace T\le t\rbrace=1-P\lbrace T>t\rbrace=1-P\lbrace N(t)=0\rbrace=1-e^{-\lambda t},t\ge0$ 求设备已经无故障工作8小时的情况下,再无故障工作16小时的概率. $P\lbrace T\ge16+8|T\ge8\rbrace=\dfrac{P\lbrace T\ge24\rbrace}{P\lbrace T\ge8\rbrace}=\dfrac{1-P\lbrace T\le24\rbrace}{1-P\lbrace T\le8\rbrace}=\dfrac{e^{-24\lambda}}{e^{-e\lambda}}=e^{-16\lambda}$

例10 $X\sim N(0,1)$,给定$0<\alpha<1$,数$\mu_\alpha$满足$P\lbrace X>\mu_\alpha\rbrace=\alpha$.若$P\lbraceX<x\rbrace=\alpha$,求$x$.
$P\lbraceX<x\rbrace=2\varPhi(i)-1$,$1-\varPhi(i)=\dfrac{1-\alpha}2$,$x=\mu_{\frac{1-\alpha}2}$

例12 $|X|\le1$,$P\lbrace X=-1\rbrace=\dfrac18$,$P\lbrace X=-1\rbrace=\dfrac14$,在$\lbrace-1<X<1\rbrace$的条件下,$X$在$(-1,1)$内任一子区间上取值的条件概率与该子区间长度成正比.求$X~F(X)$. $F(x)=P\lbrace X\le x\rbrace$, 记$A=\lbrace-1<X<1\rbrace$,$P(A)=\dfrac58$, $f_X(x|A)=\begin{dcases}\dfrac12, & -1< x<1 \0, & \text{other}\end{dcases}$ 在$A$上,$F(x)=\dfrac18+P\lbrace-1<X\le x\rbrace=\dfrac18+P\lbrace-1< X\le x,\Omega\rbrace=\dfrac18+P\lbrace-1<X\le x,A\cup\bar A\rbrace=\dfrac18+P\lbrace-1<X\le x,A\rbrace=\dfrac18+P(A)P\lbrace-1<X\le x|A\rbrace=\dfrac18+\dfrac58\dfrac{x+1}2$ $x\sim F(x)=\begin{dcases}0, & x-1 \ \dfrac{5x+7}{16}, & -1\le x<1 \ 1, &x\ge1 \end{dcases}$

例13 $X\sim\begin{bmatrix}0 & 1 \ \dfrac12 & \dfrac12 \end{bmatrix}$,在$X=i$的条件下,$Y\sim U(0,i),i=1,2$.求$Y\sim F_Y(y)$. $F_Y(y)=P\lbrace Y\le y \rbrace$ 若$y<0$,$F_Y(y)=0$,若$y\ge2$,$F_Y(y)=1$. 若$0\le x<1$,$F_Y(y)=P\lbrace Y\le y,\Omega\rbrace=P\lbrace Y\le y,(X=1)\cup(X=2)\rbrace=P(X=1)P\lbrace Y\le y|X=1\rbrace+P(X=2)P\lbrace Y\le y|X=2\rbrace=\dfrac12y+\dfrac12\dfrac{y}2=\dfrac34y$ 若$1\le x<2$,$F_Y(y)=P\lbrace Y\le y,\Omega\rbrace=P(X=1)P\lbrace Y\le y|X=1\rbrace+P(X=2)P\lbrace Y\le y|X=2\rbrace=\dfrac12+\dfrac12\dfrac{y}2=\dfrac{y+2}4$

用分布

设$X\sim F(x)$,则

  • $P(x\le a)=F(a)$
  • $P(x<a)=F(a-0)$
  • $P(x=a)=P(x\le a)-P(x<a)=F(a)-F(a-0)$
  • $P(a<x<b)=P(x<b)-P(x\le a)=F(b-0)-F(a)$
  • $P(a\le x\le b)=P(x\le b)-P(x<a)=F(b)-F(a-0)$

例14 设$X\sim F(x)=\begin{dcases}0, & x<0 \ \dfrac12, & 0\le x<1 \ 1-e^{-x}, &x\ge1 \end{dcases}$,求$P(0\le X\le1)$,$P(0< X<1)$. $P(0\le X\le1)=F(1)-F(0-0)=1-e^{-1}$, $P(0<X<1)=F(1-0)-F(0)=\dfrac{12}-\dfrac{12}=0$,

设$X\sim p_i$,则$P(x\in I)=\sum\limits_{x_i\in I}p_i$.

设$X\sim f(x)$,则$P(x\in I)=\int_If(x)\mathrm{d}x$.

例15 设$X\sim f(x)=\begin{dcases}Ax, & 1< x<2 \ B, & 2\le x<3 \ 0, & \text{other} \end{dcases}$,$P(1<x<2)=P(2<x<3)$求$A,B$. 1=$\int_{-\infty}^{+\infty}f(x)\mathrm{d}x=\int_1^2Ax\mathrm{d}x+\int_2^3B\mathrm{d}x=\dfrac32A+B$, $\int_1^2Ax\mathrm{d}x+\int_2^3B\mathrm{d}x$,$\dfrac32A=B$. $A=\dfrac13,B=\dfrac12$

例16

$X\sim f(x)=Ae^{-\left(\dfrac{x+1}2\right)^2}$,且$aX+b\sim N(0,1),a>0$,求$A,a,b$. $f(x)=\dfrac1{\sqrt{2\pi}\sigma}e^{-\dfrac{(x-\mu)^2}{2\sigma^2}}$,$\mu=-1,\sigma=\sqrt2,A=\dfrac1{2\sqrt\pi}$. $\dfrac{X-(-1)}{\sqrt2}=aX+b$,$a=b=\dfrac1{\sqrt2}$ $X\sim f(x)=\begin{dcases}\dfrac13, & 0\le x\le1 \ \dfrac29, & 3\le xle6 \ 0, & \text{other} \end{dcases}$,$P(X\ge k)=\dfrac23$,求$k$的取值范围. $1\le k\le3$

求函数分布

$X\sim\begin{bmatrix}x_1 & x_2 & \cdots \ p_1 & p_2 & \cdots \end{bmatrix}$,$Y=g(X)$,则$Y\sim\begin{bmatrix}g(x_1) & g(x_2) & \cdots \ p_1 & p_2 & \cdots \end{bmatrix}$

例17 $X\sim\begin{bmatrix}-2 & -1 & 0 & 1 & 2 & 3 \ 0.05 & 0.15 & 0.20 & 0.25 & 0.20 & 0.15 \end{bmatrix}$,$Y=2X+1$,$Z=X^2$,求$Y,Z$的概率分布 $Y\sim\begin{bmatrix}-3 & -1 & 1 & 3 & 5 & 7 \ 0.05 & 0.15 & 0.20 & 0.25 & 0.20 & 0.15 \end{bmatrix}$ $Z\sim\begin{bmatrix}0 & 1 & 4 & 9 \ 0.20 & 0.40 & 0.25 & 0.15 \end{bmatrix}$

设$X\sim F_X(x)$,$Y=g(X)$, 则$F_Y(y)=P\lbrace Y\le y\rbrace=P\lbrace g(X)\le y\rbrace=\int_{g(x)\le y}f_X(x)\mathrm{d}x$

例20 $X\sim f(x)=\begin{dcases}\dfrac12, & -1< x<0 \ \dfrac14, & 0\le x<2 \ 0, & \text{other} \end{dcases}$,$Y=X^2$,求$Y\sim f_Y(y)$. 则$F_Y(y)=P\lbrace Y\le y\rbrace=P\lbrace X^2\le y\rbrace=\int_{g(x)\le y}f_X(x)\mathrm{d}x$

当$y<0$,$F_Y(y)=0$,当$y<0$,$F_Y(y)=1$. 当$0\le y<1,F_Y(y)=P\lbrace-\sqrt y\le X\le\sqrt y\rbrace=\int_{-\sqrt y}^{\sqrt y}f_X(x)\mathrm{d}x=\int_{-\sqrt y}^0\dfrac12\mathrm{d}x+\int_0^{\sqrt y}\dfrac14\mathrm{d}x=\dfrac34\sqrt{y}$. 当$1\le y<4,F_Y(y)=P\lbrace-1\le X\le\sqrt y\rbrace=\int_{-1}^0\dfrac12\mathrm{d}x+\int_0^{\sqrt y}\dfrac14\mathrm{d}x=\dfrac12+\dfrac{\sqrt y}4$ $F_Y(y)=\begin{dcases}0, & x<0 \ \dfrac34\sqrt{y}, & 0\le x<1 \ \dfrac12+\dfrac{\sqrt y}4, & 0\le y<1 \ 1, & x\ge4 \end{dcases}$. $f_Y(y)=F’_Y(y)=\begin{dcases}\dfrac3{8\sqrt{y}}, & 0<x<1 \ \dfrac1{8\sqrt{y}}, & 1\le x<4 \ 0, & \text{other}\end{dcases}$.

设$X\sim F_X(x)$,$Y=g(X)$严格单调, 则$F_Y(y)=P\lbrace Y\le y\rbrace=P\lbrace g(X)\le y\rbrace$ 若$g$严格单调递增, $F_Y(y)=P\lbrace X\le g^{-1}(y)\rbrace=\int_{-\infty}^{g^{-1}(y)}f_X(x)\mathrm{d}x$, $f_Y(y)=f_X(g^{-1}(y))(g^{-1})’(y)$. 若$g$严格单调递增, $F_Y(y)=P\lbrace X\ge g^{-1}(y)\rbrace=\int_{g^{-1}(y)}^{+\infty}f_X(x)\mathrm{d}x$, $f_Y(y)=-f_X(g^{-1}(y))(g^{-1})’(y)$. 综上所述,$f_Y(y)=\begin{dcases}f_X(g^{-1}(y))|(g^{-1})’(y)|, & \alpha< y<\beta \ 0, & \text{other}\end{dcases}$,$\alpha=\mathrm{min}(g(a),g(b)),\beta=\mathrm{max}(g(a),g(b))$

例19 对球的直径进行测量,用$X$表示测量值,$X\sim U(a,b),a>0$,求球的体积的概率密度. $x\sim f(x)=\begin{dcases}\dfrac1{b-a}, &a< x< b \ 0, & \text{other.}\end{dcases}$ 体积$Y=\dfrac\pi6X^3$,$x=\sqrt[3]{\dfrac6\pi y}$ $\begin{array}{l}f_Y(y)&=\begin{cases} f_X(\sqrt[3]{\dfrac6\pi y})(\sqrt[3]{\dfrac6\pi y})’, & \dfrac\pi6a^3< y<\dfrac\pi6b^3 \ 0, & \text{other}\end{cases}\&=\begin{cases}\dfrac{1}{3(b-a)}\cdot \sqrt[3]{\dfrac6\pi}\cdot y^{-\dfrac23}, & \dfrac\pi6a^3< y< \dfrac\pi6b^3 \ 0, & \text{other}\end{cases} \end{array}$

例21 设备开机后无故障工作时间$X\sim$指数分布,$EX=5$.设备故障则关机,无故障工作两小时则关机,求无故障工作时间$Y\sim F_Y(y)$.并问有几个间断点. $Y=\mathrm{min}(X,2)$,$F_Y(y)=P\lbrace Y\le y\rbrace=P\lbrace\mathrm{min}(X,2)\le2\rbrace$. $x\sim F_X(x)=\begin{dcases}0, & x<0 \ 1-e^{-\dfrac{x}{5}}, &x\ge 0 \end{dcases}$ 当$y<0$,$F_Y(y)=0$. 当$y\ge0$,$F_Y(y)=1$. 当$0\le y<2$,$F_Y(y)=P\lbrace 0\le X\le y\rbrace=F_X(y)-F_X(0)=1-e^{-\dfrac{x}{5}}$. $y\sim F_Y(y)=\begin{dcases}0, & y<0 \ 1-e^{-\dfrac{x}{5}}, &0\le y<2 \ 1, &y\ge2 \end{dcases}$

例22 $X\sim E(\lambda)$,验证$Y=[x]+1\sim G(1-e^{-\lambda})$. $x\sim F(x)=\begin{dcases}1-e^{-\lambda x}, &x\ge 0\ 0, & x<0 \end{dcases}$ $P\lbrace Y=k\rbrace=P\lbrace [x]+1=k \rbrace=P\lbrace k-1\le X<k \rbrace=F_X(k)-F_X(k-1)=e^{-\lambda(k-1)}-e^{-\lambda k}=(1-e^{-\lambda})e^{\lambda(k-1)}\sim Ge(1-e^{-\lambda})$.

多维随机变量及其分布

判分布

$F(x,y)$是联合分布函数:

  • 单调性$x_1>x_2,F(x_1,y)\ge F(x_2,y)$
  • 右连续$F(x+0,y)=F(x,y)$
  • 有界性$F(-\infty,y)=0,F(+\infty,+\infty)=1$
  • 非负性$P(x_1<X\le x_2,y_1<Y\le y_2)=F(x_2,y_2)-F(x_1,y_2)-F(x_2,y_1)+F(x_1,y_1)$

$p_{ij}$是联合分布律:

  • $p_{ij}\ge0$
  • $\sum\limits_i\sum\limits_j p_{ij}=1$

$f(x,y)$是联合密度:

  • $f(x,y)\ge0$
  • $\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)\mathrm{d}x\mathrm{d}y=1$

求分布

求联合

求$F(x,y)$

若$(X,Y)\sim p_{ij}$,$F(x,y)=P(X\le x,Y\le y)=\sum\limits_{x_i\le x,y_i\le y}p_{ij}$.

例3.3.1 已知联合概率密度$\begin{array}{c|c c} X \backslash Y & 0 & 1 \ \hline 0 & 7/21 & 4/21 \ 1 & 7/21 & 3/21\end{array}$,求$F(x,y)$. $F(x,y)=\left\lbrace\begin{array}{ll}0, & x\lt0\text{ or }y\lt0 \ 11/21, & 0\le x\lt1,y\ge1 \ 14/21, & x\ge1,0\le y\lt1 \ 7/21, & 0\le x\lt1,0\le y\lt1 \ 1, & x\ge1,y\ge1 \ \end{array}\right.$

若$(X,Y)\sim f(x,y)$,$F(x,y)=P(X\le x,Y\le y)=\int_{-\infty}^x\mathrm{d}u\int_{-\infty}^yf(u,v)\mathrm{d}v$.

例3.3.2 $(X,Y)\sim f(x,y)=\left\lbrace\begin{array}{ll}2e^{-(x+y)},&0\lt x\lt y\0,&\text{other}\end{array}\right.$求$(x,y)\sim F(x,y)$. 若$x<0$或$y<0$,$F(x,y)=0$. 若$0\le y<x$,$F(x,y)=\int_0^y\mathrm{d}t\int_0^t2e^{-(s+t)}\mathrm{d}s=2\int_0^ye^{-t}\mathrm{d}t\int_0^te^{-s}\mathrm{d}s=\int_0^ye^{-t}(1-e^{-t})\mathrm{d}t=1-2e^{-y}+e^{-2y}$. 若$0\le x<y$,$F(x,y)=\int_0^x\mathrm{d}s\int_s^ye^{-(s+t)}\mathrm{d}t=1-2e^{-y}-e^{-2x}+2e^{-(x+y)}$.

求$p_{ij}$.

例3.3.9 袋子中有①,①,②,③四个球,先从中无放回取两次.设$X_1,X_2$分别表示第一次,第二次取到球的号码.

求$X_1,X_2$的联合分布. $\begin{array}{c|c c c} X_1\backslash X_2 & 1 & 2 & 3 \ \hline 1 & 1/6 & 1/6 & 1/6 \ 2 & 1/6 & 0 & 1/12 \ 3 & 1/6 & 1/12 & 0 \end{array}$

求$f(x,y)$

二维均匀分布:$(X,Y)\sim f(x,y)=\left\lbrace\begin{array}{ll}\dfrac{1}{S_D},&(x,y)\in D\0,&(x,y)\notin D\end{array}\right.$

二维正态分布$(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$.

  • 若$(X_1,X_2)\sim N$,则$X_1\sim N,X_2\sim N$.
  • 若$X_1\sim N,X_2\sim N$,且$X_1,X_2$相互独立,则$(X_1,X_2)\sim N$,且$\rho=0$.
  • 若$(X_1,X_2)\sim N$,则$k_1X_1+k_2X_2\sim N$.
  • 若$(X_1,X_2)\sim N$,$Y_1=a_1X_1+a_2X_2,Y_2=b_1X_1+b_2X_2$,$\begin{vmatrix}a_1&a_2\b_1&b_2\end{vmatrix}\neq0$,则$(Y_1,Y_2)\sim N$.
  • 若$(X_1,X_2)\sim N$,则$X_1,X_2$独立当且仅当$\rho_{XY}=0$.

求边缘

求$F_X(x)$和$F_Y(y)$

$F_X(x)=F(x,+\infty)$,$F_Y(y)=F(+\infty,y)$.

求$p_{i\cdot}$和$p_{\cdot j}$

$p_{i\cdot}=\sum\limits_{j}p_{ij}$,$p_{\cdot j}=\sum\limits_{i}p_{ij}$.

求$f_X(x)$和$f_Y(y)$

$f_X(x)=\int_{-\infty}^{+\infty}f(x,y)\mathrm{d}y$,$f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)\mathrm{d}x$.

求条件

$P(Y=y_jX=x_i)=\dfrac{p_{ij}}{p_{i\cdot}}$.
$f_{YX}(yx)=\dfrac{f(x,y)}{f_X(x)}$.

判独立

  • $X,Y$独立当且仅当$F(x,y)=F_X(x)F_Y(y)$.
  • $X,Y$独立当且仅当$p_{ij}=p_{i\cdot}p_{\cdot j}$.
  • $X,Y$独立当且仅当$f(x,y)=f_X(x)f_Y(y)$.

用分布

例3.3.3 $P(X=-1Y=1)=\dfrac23,P(X=-1Y=0)=\dfrac35$,$\begin{array}{ccccc}X\backslash Y&-1&0&1&\\hline-1&&&0.2&\1&0.1&&&\\hline&0.2&&&1\end{array}$
计算得$\begin{array}{ccccc}X\backslash Y&-1&0&1&\\hline-1&0.1&0.3&0.2&0.6\1&0.1&0.2&0.1&0.4\\hline&0.2&0.5&0.3&1\end{array}$.  

例3.3.4 若$X\sim N(0,4),Y\sim N(1,9)$独立,求$f(x,y)$. $X\sim f_X(x)=\dfrac{1}{\sqrt{2\pi}\cdot2}e^{-\frac{x^2}{8}}$; $Y\sim f_Y(y)=\dfrac{1}{\sqrt{2\pi}\cdot3}e^{-\frac{(y-1)^2}{18}}$; $f(x,y)=f_X(x)f_Y(y)=\dfrac{1}{12\pi}e^{-(\frac{x^2}{8}+\frac{(y-1)^2}{18})}$.

例3.3.5 $X\sim U[0,1]$,在$X=x(0<x<1)$的条件下,$Y$在$[0,x]$上服从均匀分布.

求$f(x,y)$. $f_X(x)=\left\lbrace\begin{array}{ll}1,&0\le x\le1\0,&\text{other}\end{array}\right.$, $f_{Y|X}(y|x)=\left\lbrace\begin{array}{ll}\dfrac1x,&0\le y\le x\0,&\text{other}\end{array}\right.$, $f(x,y)=f_X(x)\cdot f_{Y|X}(y|x)=\left\lbrace\begin{array}{ll}\dfrac1x,&0\le y\le x\le1\0,&\text{other}\end{array}\right.$

求$f_Y(y)$. 当$0<y<1$,$f_Y(y)=\int_y^1\dfrac1x\mathrm{d}x=-\ln y$. $f_Y(y)=\left\lbrace\begin{array}{ll}-\ln y,&0\lt y\lt1\0,&\text{other}\end{array}\right.$,

求$P(X+Y>1)$. $P(X+Y>1)=\iint\limits_Df(x,y)\mathrm{d}x\mathrm{d}y=\int_{\frac12}^1\mathrm{d}x\int_{1-x}^x\dfrac1x\mathrm{d}y=1-\ln2$.

例3.3.6 已知$(X,Y)$在点$(0,0),(1,-1),(1,1)$为顶点的三角形上均匀分布.

求$f(x,y)$. $f(x,y)=\left\lbrace\begin{array}{ll}1,&0\le x\le1,|y|\le x\0,&\text{other}\end{array}\right.$

求$f_X(x),f_Y(y),f_{X|Y}(x|y),f_{Y|X}(y|x)$,判断$X,Y$独立性. $f_X(x)=\left\lbrace\begin{array}{ll}\int_{-x}^x1\mathrm{d}y,&0\le x\le1\0,&\text{other}\end{array}\right.=\left\lbrace\begin{array}{ll}2x,&0\le x\le1\0,&\text{other}\end{array}\right.$. $f_Y(y)=\left\lbrace\begin{array}{ll}\int_{-y}^11\mathrm{d}x,&-1\le y\lt0\\int_y^11\mathrm{d}x,&0\le y\le1\0,&\text{other}\end{array}\right.=\left\lbrace\begin{array}{ll}1+y,&-1\le y\lt0\1-y,&0\le y\le1\0,&\text{other}\end{array}\right.$. $f_{X|Y}(x|y)=\left\lbrace\begin{array}{ll}\dfrac{1}{1-|y|},&|y|\lt x\le1\0,&\text{other}\end{array}\right.$. $f_{Y|X}(y|x)=\left\lbrace\begin{array}{ll}\dfrac{1}{2x},&|y|\lt x\le1\0,&\text{other}\end{array}\right.$. 不独立.

求$P(X>0,Y>0,P(X>\dfrac{1}{2}|Y>0),P(X>\dfrac12|Y=\dfrac14)$. $P(X>0,Y>0)=\dfrac12$. $P(X>\dfrac{1}{2}|Y>0)=\dfrac34$. $P(X>\dfrac12|Y=\dfrac14)=\dfrac23$.

例3.3.8 $X,Y$相互独立,$X\sim E(\lambda)$,$P(Y=-1)=\dfrac14$,$P(Y=-1)=\dfrac34$.计算$P(X-Y\le1),P(XY\le2)$. $X\sim f_X(x)=\left\lbrace\begin{array}{ll}\lambda e^{-\lambda x}, &x>0 \ 0, & \text{other}\end{array}\right.\sim F_X(x)=\left\lbrace\begin{array}{ll}1-e^{-\lambda x}, &x\ge 0 \ 0, & x<0 \end{array}\right.$. $P(X-Y\le1)=P(X\le0)P(Y=-1)+P(X\le2)P(Y=1)=\dfrac34(1-e^{-2\lambda})$. $P(XY\le2)=P(X\le2)P(Y=1)+P(X\ge-2)P(Y=-1)=1-\dfrac34e^{-2\lambda}$.

求函数分布

多维到一维

(离散,离散)到离散

例3.3.9 袋子中有①,①,②,③四个球,先从中无放回取两次.设$X_1,X_2$分别表示第一次,第二次取到球的号码. $\begin{array}{c|c c c} X_1\backslash X_2 & 1 & 2 & 3 \ \hline 1 & 1/6 & 1/6 & 1/6 \ 2 & 1/6 & 0 & 1/12 \ 3 & 1/6 & 1/12 & 0 \end{array}$

求$Y=X_1X_2$的分布. $Y=X_1X_2$的所有可能取值有$1,2,3,6$. $Y\sim\begin{bmatrix}1&2&3&6\1/6&1/3&1/3&1/6\end{bmatrix}$.

$X\sim p_k,Y\sim q_k$,$X,Y$独立且取值在某一集合.

  • $Z=X+Y$且$X,Y$独立非负整数,$P(Z=k)=p_0q_k+\cdots+p_kq_0$.
  • $Z=\max (X,Y)$且$X,Y$独立非负整数,$P(Z=k)=p_k(q_0+\cdots+q_k)+q_k(p_0+\cdots+p_{q-1})$.
  • $Z=\min(X,Y)$且$X,Y\le l$独立非负整数,$P(Z=k)=p_k(q_k+\cdots+q_l)+q_k(p_{k+1}+\cdots+p_l)$.

例3.3.10 $X,Y\overset{iid}{\sim}Ge(p)$,求$Z=\max(X,Y)$的分布, $P(X=k)=P(Y=k)=pq^{k-1}$. $P(Z=k)=pq^{k-1}(p+pq+\cdots+pq^{k-1})+pq^{k-1}(p+pq+\cdots+pq^{k-2})=pq^{k-1}(2-q^k-q^{k-1})$.

例3.3.17 $X,Y$独立,且$Y\sim\begin{bmatrix}-1&1\\dfrac14&\dfrac34\end{bmatrix}$.

若$X\sim P(\lambda)$,求$Z=XY$的分布. $P(X=k)=\dfrac{\lambda^k}{k!}e^{-\lambda}$. $P(Z=0)=P(X=0)=e^{-\lambda}$. $P(Z=k)=P(X=k)P(Y=1)=\dfrac{3}{4}\dfrac{\lambda^k}{k!}e^{-\lambda}(k>0)$. $P(Z=k)=P(X=k)P(Y=-1)=\dfrac{1}{4}\dfrac{\lambda^k}{k!}e^{-\lambda}(k<0)$.

(连续,连续)到连续

$(X,Y)\sim f(x,y),Z=g(X,Y)$,$F_Z(z)=P(Z\le z)=P(g(X,Y)\le z)=\iint\limits_{g(x,y)\le z}f(x,y)\mathrm{d}\sigma$.

$(X,Y)\sim f(x,y),Z=X+Y$,$f_Z(z)=\int_{-\infty}^{+\infty}f(x,z-x)\mathrm{d}x=\int_{-\infty}^{+\infty}f(z-y,y)\mathrm{d}y$,若$X,Y$独立,$f_Z(z)=\int_{-\infty}^{+\infty}f_X(x)f_Y(z-x)\mathrm{d}x=\int_{-\infty}^{+\infty}f_X(z-y)f_Y(y)\mathrm{d}y$.

$(X,Y)\sim f(x,y),Z=X-Y$,$f_Z(z)=\int_{-\infty}^{+\infty}f(x,x-z)\mathrm{d}x=\int_{-\infty}^{+\infty}f(y+z,y)\mathrm{d}y$,若$X,Y$独立,$f_Z(z)=\int_{-\infty}^{+\infty}f_X(x)f_Y(x-z)\mathrm{d}x=\int_{-\infty}^{+\infty}f_X(y+z)f_Y(y)\mathrm{d}y$.

$(X,Y)\sim f(x,y),Z=XY$,$f_Z(z)=\int_{-\infty}^{+\infty}\dfrac{1}{x}f(x,\dfrac{z}{x})\mathrm{d}x=\int_{-\infty}^{+\infty}\dfrac{1}{y}f(\dfrac{z}{y},y)\mathrm{d}y$,若$X,Y$独立,$f_Z(z)=\int_{-\infty}^{+\infty}\dfrac{1}{x}f_X(x)f_Y(\dfrac{z}{x})\mathrm{d}x=\int_{-\infty}^{+\infty}\dfrac{1}{y}f_X(\dfrac{z}{y})f_Y(y)\mathrm{d}y$.
$(X,Y)\sim f(x,y),Z=\dfrac{X}{Y}$,$f_Z(z)=\int_{-\infty}^{+\infty}yf(yz,y)\mathrm{d}y$,若$X,Y$独立,$f_Z(z)=\int_{-\infty}^{+\infty}yf_X(yz)f_Y(y)\mathrm{d}y$.

例3.3.12 设$(X,Y)$在$0\le x\le2,0\le y\le1$上服从均匀分布,求$Z=XY\sim f_Z(z)$.

[分布函数法]当$0<z<2$,$F_Z(z)XY\le z=\int_0^z\mathrm{d}x\int_0^1\dfrac12\mathrm{d}y+\int_z^2\mathrm{d}x\int_0^{\frac{z}{x}}\dfrac12\mathrm{d}y=\dfrac12z(1-\ln z+\ln2)$, $f_Z(z)=\dfrac12(\ln2-\ln z)$.

[卷积公式法]由$0\le y\le 1$,$0\le z\le x$. 当$0<z<2$,$f_Z(z)=\int_{-\infty}^{+\infty}\dfrac{1}{|x|}f(x,\dfrac{z}{x})\mathrm{d}x=\int_z^2\dfrac{1}{2x}\mathrm{d}x=\dfrac12(\ln2-\ln z)$.

例3.3.11 $(X,Y)\sim f(x,y)=\left\lbrace\begin{array}{ll}2-x-y,&0\lt x\lt1,0\lt y\lt1\0,&\text{other}\end{array}\right.$.求$Z=X+Y\sim f_Z(z)$. $f_Z(z)=\int_{-\infty}^{+\infty}f(x,z-x)\mathrm{d}x=\left\lbrace\begin{array}{ll}\int_0^z(2-z)\mathrm{d}x,&0\lt z\lt1\\int_{z-1}^1(2-z)\mathrm{d}x,&1\lt z\lt2\0,&\text{other}\end{array}\right.=\left\lbrace\begin{array}{ll}z(2-z),&0\lt z\lt1\(2-z)^2,&1\lt z\lt2\0,&\text{other}\end{array}\right.$

$(X,Y)\sim F(x,y)$,$Z=\max(X,Y)$,$F_Z(z)=P(Z\le z)=P(X\le z,Y\le z)=F(z,z)$.当$X,Y$独立,则$F_Z(z)=F_X(x)F_Y(y)$.若$X_1,X_2,\cdots,X_n\overset{idd}{\sim}F$,$F_Z(z)=[F(Z)]^n$,$f(z)=n[F(z)]^{n-1}f(z)$.

$(X,Y)\sim F(x,y)$,$Z=\min(X,Y)$,$X,Y$独立,$F_Z(z)=1-[1-F_X(z)][1-F_Y(z)]$.若$X_1,X_2,\cdots,X_n\overset{idd}{\sim}F$,$F_Z(z)=1-[1-F(Z)]^n$,$f(z)=n[1-F(z)]^{n-1}f(z)$.

例3.3.11 $(X,Y)\sim f(x,y)=\left\lbrace\begin{array}{ll}6e^{-(2x+3y)},&x\gt0,y\gt0\0,&\text{other}\end{array}\right.$.求$Z=\max(X,Y)\sim F_Z(z)$. 容易得到$X\sim E(2),Y\sim E(3)$,$X,Y$独立. $F_Z(z)=F_X(z)F_Y(z)\left\lbrace\begin{array}{ll}(1-e^{-2z})(1-e^{-3z}),&z\ge0\0,&\text{other}\end{array}\right.$

$X,Y$独立:

  • $X\sim B(n,p),Y\sim B(m,p),X+Y\sim B(n+m,p)$
  • $X\sim P(\lambda_1),Y\sim P(\lambda_2),X+Y\sim P(\lambda_1+\lambda_2)$
  • $X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma^2),X+Y\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$.
  • $X\sim \chi^2(n),Y\sim \chi^2(m),X+Y\sim \chi^2(n+m)$
(离散,连续)到连续

例3.3.17 $X,Y$独立,且$Y\sim\begin{bmatrix}-1&1\\dfrac14&\dfrac34\end{bmatrix}$.

若$X\sim N(0,1)$,求$Z=XY$的分布. $F_Z(z)=P(XY\le z)=P(X\ge z)P(Y=-1)+P(X\le z)P(Y=1)=\varPhi(z)$. $f_Z(z)=\varphi(z)=\dfrac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$.

例3.3.15 设$(X,Y)$在$0<x<1,x^2<y<\sqrt{x}$上服从均匀分布,$U=\left\lbrace\begin{array}{ll}1,&X\le Y\0,&X\gt Y\end{array}\right.$.

求$(X,Y)\sim f(x,y)$. $f(x,y)=\left\lbrace\begin{array}{ll}3,&(x,y)\in D\0,&\text{other}\end{array}\right.$.

求$Z=U+X\sim F_Z(z)$. 当$0\le z<1$,$F_Z(z)=P(U+X\le z)=P(U=0,X\le z)=P(Y<X\le z)=\int_0^z\mathrm{d}x\int_{x^2}^x3\mathrm{d}y=\dfrac32z^2-z^3$. 当$1\le z<2$,$F_Z(z)=P(U+X\le z)=P(U=0,X\le z)+P(U=1,X\le z-1)=P(Y<X)+P(X\le z-1,X\le Y)=\dfrac12+\int_0^z\mathrm{d}x\int_x^{\sqrt{x}}3\mathrm{d}y=\dfrac12+2(z-1)^{\dfrac32}-\dfrac32(z-1)^2$.

到多维

例3.3.16 $X,Y$独立,且$X\sim\begin{bmatrix}0&1\\dfrac14&\dfrac34\end{bmatrix}$,$Y\sim E(\lambda)$.令$U=\left\lbrace\begin{array}{ll}1,&X\lt Y\0,&X\ge Y\end{array}\right.,V=\left\lbrace\begin{array}{ll}1,&X\lt 2Y\0,&X\ge 2Y\end{array}\right.$,求$(U,V)\sim p_{ij}$. $P(U=0)=P(X<Y)=P(Y>0)P(X=0)+P(Y>1)P(X=1)=\dfrac14+\dfrac{3}{4}e^{-1}$. $P(V=0)=P(X<2Y)=P(Y>0)P(X=0)+P(Y>\dfrac12,X=1)=\dfrac14+\dfrac{3}{4}e^{-\frac12}$ $P(U=0,V=1)=0$ $\begin{array}{c|c c} U \backslash V & 0 & 1 \ \hline 0 & \dfrac14+\dfrac{3}{4}e^{-1} & 0 \ 1 & \dfrac{3}{4}(e^{-\frac12}-e^{-1}) & \dfrac34-\dfrac14e^{\frac12} \end{array}$

例3.3.18 $X,Y,Z\overset{iid}{\sim}U(0,1)$,求$P(X\ge YZ)$. 令$U=YZ$,$f_U(u)=\int_{-\infty}^{+\infty}\dfrac{1}{|y|}f(y,\dfrac{u}{y})\mathrm{d}y=\int_{-\infty}^{+\infty}\dfrac{1}{|y|}f_Y(y)f_Z(\dfrac{u}{y})\mathrm{d}y=\left\lbrace\begin{array}{ll}\int_{u}^1\dfrac{1}{y}\mathrm{d}y,&0\lt u\lt1\0,&\text{other}\end{array}\right.=\left\lbrace\begin{array}{ll}-\ln u,&0\lt u\lt1\0,&\text{other}\end{array}\right.$ $g(x,u)=f_X(x)f_U(u)=\left\lbrace\begin{array}{ll}-\ln u,&0\lt x\lt1,0\lt u\lt1\0,&\text{other}\end{array}\right.$. $P(X\ge U)=\int_0^1\mathrm{d}u\int_u^1(-\ln u)\mathrm{d}x=\dfrac34$.

数字特征

期望

$X\sim p_i$,$EX=\sum\limits_ix_ip_i$.

$X\sim f(x),EX=\int_{-\infty}^{+\infty}xf(x)\mathrm{d}x$.

$X\sim p_i$,$Y=g(X)$,$EY=\sum\limits_ig(x_i)p_i$.

$X\sim f(x)$,$Y=g(X)$,$EX=\int_{-\infty}^{+\infty}g(x)f(x)\mathrm{d}x$.

$X\sim p_i$,$Y=g(X)$,$EY=\sum\limits_ig(x_i)p_i$.

$(X,Y)\sim p_{ij},Z=g(x,y),EZ=\sum\limits_{i}\sum\limits_{j}g(x_i,y_j)p_{ij}$.

$(X,Y)\sim f(x,y)$,$Z=g(X,Y)$,$EZ=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)\mathrm{d}x\mathrm{d}y$.

$X_i\overset{idd}{\sim}F(x),Y=\min(X_1,\cdots,X_n)EY=\int_{-\infty}^{+\infty}yn[1-F(y)]^{n-1}f(y)\mathrm{d}y$.

$X_i\overset{idd}{\sim}F(x),Z=\max(X_1,\cdots,X_n),EZ=\int_{-\infty}^{+\infty}zn[F(z)]^{n-1}f(z)\mathrm{d}z$.

$若X=X_1+\cdots+X_n,EX=EX_1+\cdots+EX_n$.

  • $Ea=a,EEX=EX$
  • $E(aX+bY)=aEX+bEY,E(\sum a_iX_i)=\sum a_iEX_i$
  • $X,Y$独立,则$E(XY)=EX\cdot EY$

方差

$DX=E(X-EX)^2$

$X\sim p_i$,$DX=\sum\limits_i(x_i-EX)^2p_i$.

$X\sim f(x),EX=\int_{-\infty}^{+\infty}(x-EX)^2f(x)\mathrm{d}x$.

$DX=EX^2-(EX)^2$

$若X=X_1+\cdots+X_n,DX=DX_1+\cdots+DX_n+2\sum\limits_{1\le i<j\le n}\mathrm{Cov}(x_i,x_j)$.

  • $DX\ge 0$
  • $EX^2=DX+(EX)^2\ge(EX)^2$
  • $Dc=0$,$DX=0\Leftrightarrow X$几乎处处为常数.
  • $D(aX+b)=a^2DX$
  • $D(X\pm Y)=DX+DY\pm2\mathrm{Cov}(X,Y)$
  • $X,Y$独立,则$D(aX+bY)=a^2DX+b^2DY$
  • $X,Y$独立,则$D(XY)=DX\cdot DY+DX(EY)^2+DY(EX)^2\ge DX\cdot DY$
  • $\forall c,DX=E(X-EX)^2\le E(X-c)^2$

常用期望和方差

  • $X\sim B(n,p),EX=np,DX=npq$
  • $X\sim P(\lambda),EX=\lambda,DX=\lambda$
  • $X\sim Ge(p),EX=\dfrac1p,DX=\dfrac{q}{p^2}$
  • $X\sim U[a,b],EX=\dfrac{a+b}{2},DX=\dfrac{(b-a)^2}{12}$
  • $X\sim E(\lambda),EX=\dfrac1\lambda,DX=\dfrac{1}{\lambda^2}$
  • $X\sim N(\mu,\sigma^2),EX=\mu,DX=\sigma^2$
  • $X\sim \chi^2(n),EX=n,DX=2n$

例3.4.1 甲箱有三件合格品,三件次品,从甲箱中取出三件,求取出次品数$X$的数学期望. $X\sim\begin{bmatrix}0&1&2&3\1/20&9/20&9/20&1/20\end{bmatrix}$, $EX=\dfrac32$.

例 设试验成功的概率$p=\dfrac34$,独立重复直到两次成功为止.求试验次数$X$的数学期望. $P(X=k)=(k-1)p^2(1-p)^{k-2}$, $EX=\sum\limits_{k=2}^{\infty}k(k-1)p^2(1-p)^{k-2}=\dfrac{9}{16}\sum\limits_{k=2}^{\infty}k(k-1)x^{k-2}|{x=\frac14}=\dfrac{9}{16}\sum\limits{k=2}^{\infty}(x^k)’‘|{x=\frac14}=\dfrac{9}{16}(\dfrac{x^2}{1-x})’‘|{x=\frac14}=\dfrac83$.

例3.4.3 设$X\sim f(x)=\left\lbrace\begin{array}{ll}\dfrac{4x^2}{a^3\sqrt{\pi}}e^{-\frac{x^2}{a^2}},&x\gt0\0,&x\le0\end{array}\right.(a>0)$.求$EX,DX$. $EX=\int_0^{+\infty}x\cdot\dfrac{4x^2}{a^3\sqrt{\pi}}e^{-\frac{x^2}{a^2}}\mathrm{d}x=\dfrac{2a}{\sqrt{\pi}}\Gamma(2)=\dfrac{2a}{\sqrt{\pi}}$. $E(X^2)\int_0^{+\infty}x^2\cdot\dfrac{4x^2}{a^3\sqrt{\pi}}e^{-\frac{x^2}{a^2}}\mathrm{d}x=\dfrac{2a^2}{\sqrt{\pi}}\Gamma(\dfrac52)=\dfrac{3a^2}{2}$ $DX=EX^2-(EX)^2=(\dfrac32-\dfrac4\pi)a^2$.

注 $\Gamma(\alpha)=\int_0^{+\infty}x^{\alpha-1}e^{-x}\mathrm{d}x=2\int_0^{+\infty}t^{2\alpha-1}e^{-t^2}\mathrm{d}x$. $\Gamma(1)=1,\Gamma(\dfrac12)=\sqrt{\pi}$. $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$.

例3.4.5 $X\sim E(1)$,求$E(X+E^{-2X}),D(e^{-2x})$. $EX=1$, $E(e^{-2X})=\int_0^{+\infty}e^{-2x}e^{-x}\mathrm{d}x=\dfrac13$, $E(X+E^{-2X})=\dfrac43$, $E((e^{-2X})^2)=E(e^{-4X})=\int_0^{+\infty}e^{-4x}e^{-x}\mathrm{d}x=\dfrac15$, $D(e^{-2x})=\dfrac15-(\dfrac13)^2=\dfrac{4}{45}$.

例3.4.8甲乙二人约定在$12:00-13:00$会面,设$X,Y$分别是甲乙到达的时间,$X,Y$独立,且$X\sim f_X(x)=\left\lbrace\begin{array}{ll}3x^2,&0\lt x\lt1\0,&\text{other}\end{array}\right.$,$Y\sim f_Y(y)=\left\lbrace\begin{array}{ll}2y,&0\lt y\lt1\0,&\text{other}\end{array}\right.$.求先到达者需等待时间的数学期望. $f(x,y)=\left\lbrace\begin{array}{ll}6x^2y,&0\lt x\lt1,0\lt y\lt1\0,&\text{other}\end{array}\right.$. $E(|X-Y|)=\int_0^1\int_0^1|x-y|\cdot6x^2y\mathrm{d}x\mathrm{d}y=\dfrac14$.

例3.4.6 $X_1,X_2,\cdots X_n\overset{idd}{\sim}U(0,\theta),Y=\max(X_1,X_2,\cdots X_n),Z=\min(X_1,X_2,\cdots X_n)$,求$EY,EZ$. 当$0<t<\theta$,$f_Y(t)=n[F(t)]^{n-1}f(t)=n(\dfrac{t}{\theta})^{n-1}\dfrac1\theta$,$f_Z(t)=n[1-F(t)]^{n-1}f(t)=n(1-\dfrac{t}{\theta})^{n-1}\dfrac1\theta$. $EY=\int_0^\theta tn(\dfrac{t}{\theta})^{n-1}\dfrac1\theta\mathrm{d}t=\dfrac{n}{n+1}\theta$. $EZ=\int_0^\theta tn(1-\dfrac{t}{\theta})^{n-1}\dfrac1\theta\mathrm{d}t=\dfrac{1}{n+1}\theta$.

协方差与相关系数

$\mathrm{Cov}(X,Y)=E(X-EX)(Y-EY)$ $(X,Y)\sim p_{ij},\mathrm{Cov}(X,Y)=\sum\limits_i\sum\limits_j(x_i-a)(y_j-b)p_{ij}$ $(X,Y)\sim f(x,y),\mathrm{Cov}(X,Y)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\sum\limits_i\sum\limits_j(x_i-a)(y_j-b)f(x,y)\mathrm{d}x\mathrm{d}y$ $E(X-EX)(Y-EY)=EXY-EXEY$ $\rho_{XY}=\dfrac{\mathrm{Cov}(X,Y)}{\sqrt{DX}\sqrt{DY}}$

  • $\mathrm{Cov}(X,Y)=\mathrm{Cov}(Y,X)$
  • $\mathrm{Cov}(aX,bY)=ab\mathrm{Cov}(X,Y)$
  • $\mathrm{Cov}(X_1+X_2,Y)=\mathrm{Cov}(X_1,Y)+\mathrm{Cov}(X_2,Y)$
  • $\rho_{XY}\le1$
  • $\rho_{XY}=1$当且仅当几乎处处$Y=aX+b,a>0$
  • $\rho_{XY}=-1$当且仅当几乎处处$Y=aX+b,a<0$
  • $\rho_{XY}=0\Leftrightarrow\mathrm{Cov}(X,Y)=0\Leftrightarrow EXY=EXEY\Leftrightarrow D(X+Y)=DX+DY\Leftrightarrow D(X-Y)=DX+DY$
  • $X,Y$独立,则$\rho_{XY}=0$
  • $(X,Y)\sim N$则$X,Y$独立当且仅当$\rho_{XY}=0$

例3.4.14 设$\rho_{X,Y}=1,Z=X+Y$,求$\rho_{X,Z}$. $\rho_{X,Y}=1$,几乎处处$Y=aX+b,a>0$, 几乎处处$X+Y=(a+1)X+b,a>0$,$\rho_{X,Z}=1$.

例3.4.12 $P(A)=\dfrac14,P(B|A)=\dfrac13,P(A|B)=\dfrac12$,令$X=\left\lbrace\begin{array}{ll}1,&A\0,&\bar{A}\end{array}\right.$,$Y=\left\lbrace\begin{array}{ll}1,&B\0,&\bar{B}\end{array}\right.$.

求$(X,Y)\sim p_{ij}$. $\begin{array}{c|cc|c}X\backslash Y&0&1&\\hline0&2/3&1/12&3/4\1&1/6&1/12&1/4\\hline&5/6&1/6&1\end{array}$.

求$\rho_{XY}$ $EX=\dfrac14,DX=\dfrac{3}{16},EY=\dfrac16,DY=\dfrac{5}{36}$. $EXY=\dfrac{1}{12}$. $\rho_{XY}=\dfrac{E(XY)-EXEY}{\sqrt{DX}\sqrt{DY}}=\dfrac{\sqrt{15}}{15}$.

例3.4.11 $n$个信封随机配对,设$X$为配对成功的个数,求$EX,DX$. 取计数变量$U_k=\left\lbrace\begin{array}{ll}1,&A_k\0,\bar{A_k}\end{array}\right.$,$A_k=\lbrace$第$k$个信封配对成功$\rbrace$,$U_k=\begin{bmatrix}1&0\\dfrac1n&1-\dfrac1n\end{bmatrix}$. $X=U_1+U_2\cdots+U_n$,$EX=EX_1+EX_2+\cdots+EX_n=1$. $\mathrm{Cov}(u_i,u_j)=EU_iU_j-EU_iEU_j=\dfrac{1}{n(n-1)}-(\dfrac{1}{n})^2$. $DX=DX_1+DX_2+\cdots+DX_n+2\sum\limits_{1\le i<j\le n}\mathrm{Cov}(u_i,u_j)=1$.

独立性与相关性的判定

用分布判独立

  • $F(x,y)=F_X(x)F_Y(y)$
  • $f(x,y)=f_X(x)f_Y(y)$
  • $p_{ij}=p_{i\cdot}p_{\cdot j}$

用数字特征判断相关

$\rho_{XY}=0\Leftrightarrow\mathrm{Cov}(X,Y)=0\Leftrightarrow EXY=EX\cdot EY\Leftrightarrow D(X\pm Y)=DX+DY$.

重要结论

  • 独立一定不相关
  • 相关一定不独立
  • $(X,Y)\sim N$,则独立与相关等价
  • $(X,Y)\sim$ 0,1分布,则独立与相关等价

例 设$X\sim N(0,1),Y=X^2$,证明$X,Y$不独立. 考虑$F_X(1)=P(X\le 1)$,$F_Y(1)=P(X^2\le 1)$,$F_X(1)F_Y(1)<F(1,1)=P(X^2\le 1)$.

例3.4.17 $X\sim f(x)=\dfrac12e^{-x}$,证明$X,X$不相关,不独立.    
$\mathrm{Cov}(X,X)=EXX-EXEX$,$EX=0$,$EXX=0$.
$F_X(a)=P(X\le a),F_{X}(a)=P(X\le a),F(a,a)=P(X\le a)=F_{X}(a)$.

例3.4.16 $\theta\sim f(\theta)=\left\lbrace\begin{array}{ll}\dfrac{1}{2\pi},&0\lt\theta\lt2\theta\0,\text{other}\end{array}\right.$,$X=\cos\theta,Y=\cos(\theta+a)$,讨论$X,Y$的独立性与相关性. $EX=E\cos\theta=\int_0^{2\pi}\dfrac{1}{2\pi}\cos\theta\mathrm{d}\theta=0$. $EXY=E\cos\theta\cos(\theta+a)=\int_0^{2\pi}\dfrac{1}{2\pi}\cos\theta\cos(\theta+a)\mathrm{d}\theta=\dfrac{\cos a}{2}$. $EX^2=\int_0^{2\pi}\dfrac{1}{2\pi}\cos^2\theta\mathrm{d}\theta=\dfrac12$. $EY=0$. $EY^2=\dfrac12$. $\mathrm{Cov}=EXY-EXEY=\dfrac{\cos a}{2}$. $DX=EX^2-(EX)^2=\dfrac12=DY$. $\rho_{XY}=\cos a$. $a\neq k\pi+\dfrac\pi2$,则相关,则不独立. $a=k\pi+\dfrac\pi2$,则不相关.$X^2+Y^2=1$,以下反证$X,Y$不独立. 则$X^2,Y^2$独立,$DX^2+DY^2=D(X^2+Y^2)=0$,矛盾.

切比雪夫不等式

$\forall\varepsilon>0,P(X-EX\ge\varepsilon)\le\dfrac{DX}{\varepsilon^2}$.

例3.4.19 $EX=2,EY=2,DX=1,DY=4,\rho_{XY}=0.5$,用切比雪夫不等式估计$P(|X-Y|\ge6)$ $E(X-Y)=EX-EY=0$,$D(X-Y)=DX+DY-2\mathrm{Cov}(X,Y)=3$. $P(|X-Y|\ge6)\le\dfrac{1}{12}$.

本文由作者按照 CC BY 4.0 进行授权